skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conover, Asa_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)‐fixing cyanobacteriumTrichodesmiumcreate microscale nutrient‐rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology ofTrichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2fixation in cultures ofTrichodesmiumwithout impairing growth rate, suggesting thatTrichodesmiumcan use TMA as an alternate N source. In this study,15N‐TMA DNA stable isotope probing (SIP) of aTrichodesmiumenrichment was employed to further investigate TMA metabolism and determine whether TMA‐N is incorporated directly or secondarily via cross‐feeding facilitated by microbial associates. Herein, we identify two members of the marineRoseobacterclade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4+), which was subsequently used byTrichodesmiumand the rest of the community. The results implicate microbiome‐mediated carbon (C) and N transformations in modulating N2fixation and thus highlight the involvement of host‐associated heterotrophs in global biogeochemical cycling. 
    more » « less